When managers insist that their professional employees rigorously apply the recognized disciplines of their fields, they will do better work [1]. In this paper, we provide data from two AIS projects, Project A and Project B, that demonstrate how managers profoundly affect the way their engineers behave and how managers can motivate the engineers to apply the disciplined methods they have learned. Project B data is used here as control data. We conclude with lessons learned.

Advanced Information Services Private Ltd. is the Indian subsidiary of Advanced Information Services Inc. of Peoria, Ill. This case study is based on data from two projects executed by the subsidiary company in Chennai, India. Engineers in both projects have been trained in the PSPSM. They used PSP methods to plan the critical design/implementation/test phases of the projects.

Project Domain, Technical Environment, and Engineers’ Qualifications

The projects’ mission is to build Personal Productivity System (PPS), a commercial tool to automatically log time, track defects, maintain data, do calculations, and simplify routine tasks. Personal Planning Assistant (PPA 1.0), and Personal Quality Assistant (PQA 3.0) are two subsystems described in this article.

The target environment is a two-tier client server architecture with a Visual Basic client application for Windows 95, 98, NT, and SQL Server (under Windows NT) for the server.

The engineers’ experience level ranged from one to two years. Project managers had three to five years’ experience. All have a master’s degree in computer science or computer applications. All are trained in PSP, software inspections, managing the software process, and requirements engineering—the required software engineering training for AIS engineers.

Development Strategy

Following the requirements and high-level design phases, PPA 1.0 had 13 components to be developed and PQA 3.0 had four components.

PPA 1.0 was divided into three incremental development phases. A project manager and three engineers participated in Increment 1 development. Two more engineers were added for Increment 2. A project manager and three engineers participated again in Increment 3 development. PQA 3.0 team consisted of a project manager and three engineers.

All engineers were responsible for creating PSP plans for their components. Project managers also participated in development.

The sizes of all 13 modules of PPA 1.0 are given in Table 1.

PPA 1.0 Increments 1 and 2 — Delivery Commitment

What must happen

The Chennai team had committed to deliver PPA 1.0 (Increments 1 and 2) to the AIS Development Group in the U.S. by Aug. 1, 1999—four weeks prior to the SEI Symposium. The AIS Development Group had planned to demonstrate the PPS product (PPA1.0 Increments 1 and 2 and PQA3.0) at the Symposium.

What will happen

PPA 1.0 Increment 1 was completed four weeks behind schedule against a planned schedule of 16 weeks. Analysis of the Increment 1 Defects by Process chart (See Figure 1.) showed that engineers found and fixed more defects through team inspections and test than through personal reviews.

Planned test defects/KLOC were high for PSP trained engineers; actual test defects/KLOC were even higher (see Table 2).

About half of the slippage in schedule was directly the result of engineers spending more time than planned in test and rework. Their plans simply did not include enough time for early defect removal through personal design reviews, code reviews, and team inspections.

As the acting Development Manager, I reviewed the plans for Increment 2. I realized that the plans were based on the team’s perception of what must happen (i.e. we must ship by August 1). It was obvious that if the team planned Increment 2 similarly as in Increment 1, what would happen is that the schedule would slip again and we would likely miss our dates.

Engineers Not Using Known Effective Methods

Clearly, the engineers were not using the disciplined methods

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Module Size (Lines of Code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate Size</td>
<td>2107</td>
</tr>
<tr>
<td>PROBE</td>
<td>2043</td>
</tr>
<tr>
<td>Plan Summary 1</td>
<td>1738</td>
</tr>
<tr>
<td>Plan Summary 2</td>
<td>1154</td>
</tr>
<tr>
<td>Track Time</td>
<td>1914</td>
</tr>
<tr>
<td>Track Size</td>
<td>4250</td>
</tr>
<tr>
<td>Size Range</td>
<td>965</td>
</tr>
<tr>
<td>Object Data</td>
<td>1123</td>
</tr>
<tr>
<td>Standards & PQA Update</td>
<td>1286</td>
</tr>
<tr>
<td>Interruptions & Tool Bar</td>
<td>403</td>
</tr>
<tr>
<td>Defect Analysis</td>
<td>850</td>
</tr>
<tr>
<td>Plan Analysis</td>
<td>532</td>
</tr>
<tr>
<td>Quality Analysis</td>
<td>714</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Phase</th>
<th>Plan</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit/Integration/System</td>
<td>4.8</td>
<td>6.2</td>
</tr>
<tr>
<td>Acceptance</td>
<td>0.7</td>
<td>1.4</td>
</tr>
</tbody>
</table>
they learned in the PSP training. They knew that the PSP Plan Summary gave them useful data on their performance and they should spend time in post-mortem to improve the process and set personal goals.

They knew that they should strive for at least 80 percent yield, and Appraisal/Failure Ratio (A/FR) should be greater than 1.5 and close to 2.0. [2]. Yet, their planned A/FRs were less than 1.0. (See Table 3 for definition of PSP quality measures.)

The engineers were also aware of AIS Chennai’s business goals of defect-free delivery of the PPS product on time.

Changing the Engineers’ Behavior

I realized that I must direct the change in the engineers’ behavior. I must insist that they rigorously apply known PSP principles in their work. If I did not, nobody else would. In a team meeting I reviewed the PSP data for size, appraisal hours, failure hours, and test defects for each of the four modules in Increment 1. I used charts showing relationship of yield and Lines of Code (LOC)/hour (Figure 2) and A/FR and test defects. (Figure 3). It was not possible to draw statistically valid conclusions with only four data points. It was not necessary. The engineers got my message. Schedules were important. But a quality process is how we measure our success.

Goal Setting

I involved the project manager and engineers to set process quality goals for Increment 2:

Goal 1: Reduce test defects/KLOC
- Plan for A/FR between 1.5 and 2.0

Goal 2: Increase effectiveness of design and code reviews
- Plan for reviews of 100–150 LOC/Hour

Goal 3: Increase process yield
- Plan for yields greater than 80 percent

PPA1.0 Increments 2 and 3 – Quality is free

The engineers revised their plans. They planned for more appraisal time and less failure time. They increased their post-mortem time for analysis and process improvement. They increased total development staff hours by less than 10 percent.

Increment 2 was completed on schedule. The team analyzed the data at the conclusion of Increment 2. Process data showed improvement in measures such as yield, A/FR, and test defects/KLOC. Cost of quality remained nearly the same.

The team set more aggressive goals for Increment 3. They planned for A/FRs greater than 2.0, process yield greater than 90 %, and test defects/KLOC less than 1.0. Process data showed further improvements in quality measures. Cost of quality declined.

We present the results in charts that accompany the Web version of this paper. The data in the charts are averages of four
modules in Increment 1, six in Increment 2, and three in Increment 3 of PPA 1.0 and four modules in PQA 3.0. PQA 3.0 is used as control group since it did not have the same executive leadership to direct and change engineers’ behavior by defining criteria for success and setting aggressive individual and team goals.

Lessons Learned

1. When engineers use PSP on a real project following classroom training, their plans continue to rely on what they are most comfortable with. More time for test and rework and less time for reviews and inspections for early defect removal.
2. Management support is most critical during the transition from classroom to actual industrial use of the PSP.
3. Management support should include active participation in data analysis, goal setting, and process improvement.
4. Schedules dictate what must happen. Engineers’ personal data show what will happen.
5. Managers and engineers should jointly make commitments based on what will happen and learn to manage by data.
6. For incremental development to be effective, managers and engineers should spend post-mortem time to adjust and improve the process.
7. PSP Cost of Quality measure provides compelling evidence that quality is free.
8. PSP enables alignment of engineers’ personal goals with business goals for defect-free software delivery on time.
9. For quality to happen, managers and engineers must have mutual trust.
10. Engineers tend to improve their performance over time when they use a disciplined process and management is supportive.
11. We still have a long way to go to realize the full human potential in software development.

PSP/TSP Web Sites

This site by the Software Technology Support Group features its Process Team’s favorite CROSSTalk articles. It links readers to such articles as Process Assistance Visit: A Tool for Process Improvement; Software Process Automation: A Technology Whose Time has Come; Air Force Policies on Attaining SEI CMM Levels; Continuous Process Improvement for Software: Data Definition.

www.sei.cmu.edu/publications/documents/97.reports/97tr001/97tr001astract.html
Personal Software Process: An Empirical Study of the Impact of PSP on Individual Engineers. This report documents the results of a study that examined the impact of the PSP on the performance of 298 software engineers. The report describes the effect of PSP on key performance dimensions of these engineers, and discusses how improvements in personal capability also improve organizational performance in several areas.

www.cs.usask.ca/grads/vsk719/academic/856/project/project.html
The Personal Software Process in Meta-CASE CMPT 856 Project by Vive S. Kumar has links to PSP-related topics such as an Overview of PSP Principles of Meta-CASE Systems, How to Incorporate PSP in Meta-CASE, and Metrics for PSP.

http://archives.distance.cmu.edu/psp/pre_May
The Personal Software Process℠ A Practitioner’s Starter Kit is a course intended for practicing software engineers and their managers. It introduces the highest-leverage metrics of PSP. Students watch nine lectures, do seven programming problems, four reports, and read selected chapters from Watts Humphrey’s book, A Discipline for Software Engineering.

http://psp.distance.cum.edu/oct/resource/online.html
This site offers a list of online readings related to PSP.

www.sei.cmu.edu/psp/Results.htm
This is a Software Engineering Institute site with links to sites such as Defects vs. Experience (programs 1 and 10), Yield vs. Program Number, and Lines of Code per Hour Improvement.

http://emhain.wit.ie/!doconnor/lectures/se3/project/team14/slides/pssp1.htm
This gives an introduction and the seven progressive steps of PSP, such as Baseline Personal Process, and Personal Quality Management.

www.computer.org/computer/co1997/r5924abs.htm
This is an article by Pat Ferguson, Watts Humphrey, Soheil Khajenoori, Susan Macke and Annette Marvya that appeared in the May 1997 issue of Computer magazine. The article is “Results of Applying the Personal Software Process.”

www.acm.org/pubs/citations/proceedings/cse/273133/p322-hou/
This takes visitors to the proceedings of the 1998 SIGCSE technical symposium on computer science education, and to the paper, “Applying the PSP in CSI: An Experiment.”

Acknowledgments

Special thanks to the AIS Chennai software engineers Antony Sudhakar, D. Giridharan, R. Kailasam, K. Manicavel, Paul Jaison, R. Suresh B. Sivapiya and AIS Chennai project managers M. Jeyalakshmi, and S. Srinivas. Thanks also to R. Soudarsanan in Chennai for document preparation and Rafiuddin Syed in Peoria for review of the draft.

References

Please refer to the Web version of this paper [available at www.stsc.hill.af.mil] to see the complete set of module charts.

About the Author

Girish Seshagiri is the CEO of Advanced Information Systems Inc., a winner of the 1999 SEI/IEEE Computer Society Software Process Achievement Award. He is also the acting Executive Director and co-founder of The Watts Humphrey Software Quality Institute (SQI) located in Chennai, India. He received his master’s of science degree in physics from the University of Madras and his master’s degree in business administration in marketing from Michigan State University.

Advanced Information Services Inc.
1605 W. Candletree Drive, Suite 114
Peoria, 11. 61614
Voice: 309-691-5175, ext. 217
Fax: 309-691-5440
E-mail: girish@advinfo.net

June 2000

www.stsc.hill.af.mil