Net-Centric Operations: Defense and Transportation Synergy

COL Kenneth L. Alford, Ph.D., and Steven R. Ditmeyer
National Defense University

The Department of Defense (DoD) is actively working to transform platform-centric operations into net-centric operations. Net-centric railroading could provide DoD’s Strategic Rail Corridor Network (STRACNET) with unified operations in which positioning systems, sensors, computers, advanced mathematical models, and digital communications could be used to collect, process, and disseminate information to improve the safety, security, and operational effectiveness of our nation’s railroads in support of national defense. As both departments pursue net-centric operations there will be numerous opportunities to share technology and experience.

Admiral Jay Johnson, Chief of Naval Operations, apparently coined the phrase net-centric warfare in 1997. Net-centric warfare has been defined as an information superiority-enabled concept of operations that generates increased combat power by networking sensors, decision makers, and shooters to achieve shared awareness, increased tempo of command, higher lethality, increased survivability, and a degree of self-synchronization [1].

Rapid and significant advances in information technology hardware and software during the past two decades have made it possible to fundamentally change the way information is gathered, stored, processed, and used. As the DoD Chief Information Officer (CIO), John G. Grimes, recently noted:

… We must recognize that it is all about information, and we must view information as a strategic asset. Timely, accurate and trusted information lies at the heart of net-centric operations. [2]

The concept of net-centric operations, though, is not limited to warfare and the DoD. The DoD is not the only large government organization that is considering moving to net-centric operations. The Department of Transportation (DoT), for example, is seriously evaluating and encouraging net-centric railroading.

Net-Centric Railroading

Intelligent railroad systems were first described in the Secretary of Transportation’s report, The Changing Face of Transportation, published in 2000, and their description was expanded in the Federal Railroad Administration’s (FRA) Five-Year Strategic Plan for Railroad Research, Development, and Demonstrations, a March 2002 congressional report.

The FRA, railroads, and the railroad supply industry have been working on the development of intelligent railroad systems for command, control, communications, and information (C3I), as well as for braking systems, grade crossings, defect detection, and planning and scheduling systems. These technologies can prevent collisions and overspeed accidents, prevent hijackings and runaways, increase capacity and asset utilization, increase reliability, improve service to customers, improve energy efficiency and emissions, increase economic viability and profits, and enable railroads to measure and control costs and manage the unexpected [3].

Intelligent railroad systems could enable railroads to improve their quality of operations on the DoD-designated Strategic Rail Corridor Network (STRACNET), enhancing their responsiveness to military deployments. They would also enable railroads to respond with flexibility and agility to rapid changes in the transportation marketplace. These systems could alleviate the need for a division commander to call railroad executives late at night to find out the location of railroad cars for loading their division’s heavy equipment – like Maj. Gen. David Petraeus had to do during the 101st Airborne Division’s deployment to participate in Operation Iraqi Freedom [4].

Benefits of Net-Centric Operations

Proponents of net-centric operations – in government, industry, and academia – claim many benefits. Here are some of the most frequently claimed benefits that should apply to the DoD, the DoT, and the railroad industry:

1. Increased operational flexibility.
2. Increased decision-making speed.
3. Cost savings through increased efficiency of asset usage.
4. Improved support to geographically dispersed elements.
5. Increased visibility and a better understanding of operations.
6. Self-synchronization of subordinate organizations. For the DoD, self-synchronization means the ability of a well-informed force to organize and synchronize complex warfare activities from the bottom up. … Self-synchronization is enabled by a high level of knowledge of one’s own forces, enemy forces, and all appropriate elements of the operating environment [1].

Net-Centric Railroad Technologies

Like the DoD’s concept of net-centric warfare, the DoT’s concept of net-centric railroading is a system of systems. Twenty-nine key technologies, programs, and systems, either developed or under development, have been identified which could help create a net-centric railroading system. (For a complete list, please see the sidebar entitled Railroad Net-Centric Technologies.)

Here are 10 of the many technologies that are being considered for incorporation into a net-centric railroading system. Some, or all, of these systems may have direct application for the DoD, as well:

- **Positive Train Control (PTC) systems** are integrated C3I systems for controlling train movements with safety, security, precision, and efficiency. PTC systems would improve railroad safety by significantly reducing the probability of collisions between trains, casualties to roadway workers and damage to their equipment, and overspeed accidents. The National Transportation Safety Board (NTSB) has had PTC on its most wanted list of
railroading with intelligent railroad systems is not without impediments – the competition for capital within railroad companies, for example. Railroad companies need to understand, though, that a well-executed investment in intelligent railroad systems should reduce the capital needed for locomotives, cars, and tracks.

Net-centric railroading should enable railroads to manage unexpected situations by providing real-time information about current operations and the current environment. The DoD, as well as commercial railroad customers, could benefit significantly from improvements in visibility, running time, and service reliability resulting from the implementation of net-centric railroading.

Increasing Capacity

Today there is a capacity problem in railroading. During the past 25 years (following the deregulation of the railroad industry), American railroads have physically downsized – tracks, locomotives, train cars, and employees – while, at the same time, overall rail traffic has increased. With a growing economy and growing imports, railroads face congestion on many of their lines. The last time the nation faced a similar crisis was during World War II.

Net-centric railroading will provide an effective increase in capacity. It enables railroads to handle different types of traffic (such as coal, grain, container, and even passenger) that have different service requirements, enabling them to co-exist on the same facility. Different types of trains can each be managed according to their individual requirements.
These net-centric systems will enable control centers to know the location of all trains and the status of their performance, whether they are on schedule, behind schedule, or ahead of schedule. The tactical and strategic planning systems will enable railroads with flow control — similar to what the Federal Aviation Administration is able to currently do with aircraft — to anticipate the location of trains (two hours from now, four hours from now, etc.) and to initiate actions to reduce or remove congestion problems before they actually occur.

Sharing Insights
As the DoD continues to shift to net-centric operations, there is no reason that insights and lessons learned from work done thus far should not be shared with other federal agencies. The authors propose several concepts that may be beneficial to the railroad industry as they begin a net-centric transformation:

1. Have a thorough discussion with the railroad industry regarding which information should be pushed to users and which information should be pulled by users. The answers to those two questions are not necessarily disjointed data sets.

2. Information security and information assurance must be part of every net-centric discussion.

3. Do not underestimate the tension that exists between continuing investment in legacy systems and the upfront costs of replacement net-centric systems that offer a higher rate of return.

4. Technological changes will affect the companies within the railroad industry in unforeseen ways.

 …we must change how we train, how we organize, and how we allocate our resources … Because a net-centric force operates under a different, more modern rule set than a platform-centric force, we must make fundamental choices in at least three areas: intellectual capital, financial capital, and process. [1]

5. The importance of redundant and back-up capabilities cannot be overstated. A pessimistic look at history shows that failures often occur at the worst possible moment. The November issue of Technology Review provided an in-depth review of one such challenge during Operation Iraqi Freedom. On April 2, 2003, Army LTC Ernest Rock Marcone (a battalion commander with the 69th Armor of the Third Infantry Division) led an armored battalion of almost 1,000 U.S. soldiers to seize Objective Peach – a key bridge across the Euphrates River and the last major obstacle before American forces would reach Baghdad. That night, Marcone’s battalion was surprised by the largest counterattack of the war. All his net-centric sensing and communications technologies failed to warn him of the attack’s scale. He did not realize that between 5,000 and 10,000 Iraqi troops with about 100 tanks and other vehicles were about to attack his position:

 “Twenty-nine key technologies, programs, and systems, either developed or under development, have been identified which could help create a net-centric railroading system.”

Next to the fall of Baghdad, says Marcone, that bridge was the most important piece of terrain in the theater, and no one can tell me what’s defending it. Not how many troops, what units, what tanks, anything. There is zero information getting to me. [5]

6. Understand that your organizational culture will be affected by these changes. One of the major lessons learned is that without changes in the way an organization does business, it is not possible to fully leverage the power of information [1].

7. Maintain realistic expectations. Metcalfe’s Law is really about potential gains; there is no guarantee that simply hooking things up will make the results better [1].

8. Recognize that net-centric operations are not a panacea. Increased asset and data visibility may encourage micromanagement. Recent experience in Afghanistan and Iraq has shown that:

 …another consequence of our expanded global connectivity was that reach-back, a desirable capability when used with discrimination, metamorphosed into reach-forward as rear headquarters sought information… and then used that information to try to influence events from the rear. [5]

It is ironic that net-centric operations enables both reach back (providing increased information for local leaders to make decisions) and reach forward (providing rear headquarters with additional information and an increased temptation to micromanage). There must be a balance reached between centralized planning and local execution.

9. Be patient. The DoD has been actively working on net-centric warfare for several years, but as John G. Grimes, DoD-CIO, recently noted:

 Unlike designing a tank or launching a satellite, our transformation to net-centric operations is traversing new ground. We stand at the brink of an era when networked capabilities will increase efficiency, enhance mission success, save lives and potentially reduce force structure... [2]

Conclusion
The DoD is in the process of transforming to net-centric operations. Net-centric railroading could be the key to making railroads safer, reducing delays and costs, raising effective capacity, increasing reliability, improving customer satisfaction, improving energy utilization, reducing emissions, increasing security, and making railroads more economically viable. At the same time, these efforts should provide numerous opportunities for sharing hardware, software, and experiences.

Grimes recently summarized:

Net-enabled operations, while clearly complex, can actually be described quite simply. It is all about ensuring timely and accurate information gets where it’s needed, when it’s needed and to those who need it most. [2]

This is equally true for the DoD, the DoT, the railroad industry, other modes of
transportation, and other government agencies. Reasonable sharing of plans, research, experience, and lessons learned regarding net-centric operations should be in everyone’s best interest.

References

Notes
6. The NTSB’s most wanted list is found at the NTSB Web site <www.ntsb.gov/Reces/mostwanted/rail_issues.htm>.

About the Authors

COL Kenneth L. Alford, Ph.D., is a professor and department chair at the Industrial College of the Armed Forces at the National Defense University in Washington, DC. He has served 26 years in the Army as a personnel, automation, and acquisition officer in a wide variety of duty assignments, including his previous position as an Associate Professor in the Department of Electrical Engineering and Computer Science at the United States Military Academy, West Point, NY. He has a doctorate in computer science from George Mason University; masters degrees from the University of Illinois at Urbana-Champaign and the University of Southern California; and a bachelor’s degree from Brigham Young University.

Steven R. Ditmeyer joined the Industrial College of the Armed Forces as the DoT Faculty Chair in 2003. He served his Army active duty tour with the Office of the Special Assistant for Strategic Mobility in the Organization of the Joint Chiefs of Staff, and in the Army Reserve he served with the Military Traffic Management and Terminal Service and Head Quarters, 3rd Transportation Brigade (Railway). Ditmeyer’s civilian career has been in a number of transportation-related positions in both the public and private sectors. He received a bachelor’s degree in industrial management from the Massachusetts Institute of Technology, a masters degree in economics, and a Certificate in Transportation from Yale University where he was a Strathcona Fellow in Transportation.

Industrial College of the Armed Forces
National Defense University
Washington, D.C. 20319
Phone: (202) 685-4408
Fax: (202) 685-4175
E-mail: alfordk@ndu.edu

Industrial College of the Armed Forces
National Defense University
Washington, D.C. 20319
Phone: (202) 685-4375
Fax: (202) 685-4175
E-mail: ditmeyers@ndu.edu