Project Duration Forecasting: Comparing Earned Value Management Methods to Earned Schedule

Walt Lipke
Oklahoma City Chapter of the Project Management Institute

Earned Value Management (EVM) methods for forecasting project duration have been taught in training courses and used by project managers for four decades. These EVM methods are generally considered to be accepted practice, yet they have not been well-studied and researched as to their predictive capability. Using real project data, this article examines and compares the duration forecasts from four EVM methods to the Earned Schedule (ES) prediction technique.

The concept of ES was introduced in the spring of 2003, demonstrating the possibility of describing schedule performance in units of time [1]. ES facilitates time-based analysis of the schedule, employing uniquely the EVM measures of cost. One year subsequent to the publication of ES, the concept was extended to include project duration forecasting. The article “Further Developments in Earned Schedule” [2] put forth two equations for forecasting the final duration for a project, one of which is used in this study.

From 2004-2007, two independent papers were published investigating the capability of the ES forecasting method. One paper written by Lew Hecht describes, positively, the usefulness of ES in a case study of a single U.S. Navy project [3]. The second is a comprehensive examination of the capability of ES. The research team of Vanhoucke and Vandervoore applied a simulation method for assessing the performance of two EVM-based methods and ES in forecasting project duration [4]. A portion of the Vanhoucke and Vandervoore paper has been updated and published in the Winter 2007-2008 issue of The Measurable News [5]. The conclusion from both is that: “The results ... confirm ... that the Earned Schedule method outperforms, on average, the other forecasting methods.”

Although the results of the research performed by Vanhoucke and Vandervoore are well regarded, there remains the question of whether the simulation technique is truly representative of real project circumstances. Likewise, the case study testimonial, while strongly supportive of the use of ES indicators and forecasting, is inconclusive in broadly validating the concept. Beyond the recognized shortcomings of the aforementioned studies, it has recently been recognized that four frequently used EVM-based methods of duration forecasting have not been compared to ES. This research is focused to overcome the identified gaps. Real data from 16 projects is used to analyze the respective forecasting capabilities of the overlooked EVM methods along with ES.

This article begins by defining the pertinent elements of the EVM and ES methods. Building on this foundation, the forecasting equations are presented. Next, the hypothesis of the analysis is described. Then the computations needed to perform the analysis and evaluation are outlined. The project data is then characterized and results from the computations and analysis are discussed. Finally, conclusions are drawn.

EVM Duration Forecasting

An understanding of EVM and its terminology is assumed in this article. For convenience, the EVM terminology used to portray project status and forecast final duration is defined in the following:

• Planned Value (PV).
• Earned Value (EV).
• Budget at Completion (BAC), which is the planned cost of the project.
• Performance Measurement Baseline (PMB), which is the cumulative PV over time.
• Independent Estimate at Completion (IEAC(t)), which is the forecast final duration.

Four EVM duration forecasting techniques have been commonly applied over the last 40 years to predict project completion dates. These methods have the following basic form:

\[
\text{Duration Forecast} = \text{Elapsed Time} + \text{Forecast for Work Remaining} \\
\text{IEAC(t)} = \text{AT} + \left(\frac{\text{BAC} - \text{EV}}{\text{Work Rate}} \right)
\]

where

\[
\text{AT} = \text{Actual Time} \quad \text{(the duration elapsed to the time at which PV and EV are measured)} \\
\text{BAC} - \text{EV} \quad \text{is commonly termed the work remaining} \\
\text{Work Rate} \quad \text{is a factor which converts the work remaining to time, the duration forecast for the remaining work}
\]

The four Work Rates commonly applied are:

1) Average Planned Value: \(\text{PVav} = \frac{\text{PVcum}}{n}\)
2) Average Earned Value: \(\text{EVav} = \frac{\text{EVcum}}{n}\)
3) Current Period Planned Value: \(\text{PValp} = \text{IEAC(t)}\)
4) Current Period Earned Value: \(\text{EVlp}\)

\[
\text{PVcum} = \text{Cumulative value of PV} \\
\text{EVcum} = \text{Cumulative value of EV} \\
\]

\(n\) = Total number of periodic time increments of project execution within AT

The EVM forecasts of final duration, \(\text{IEAC(t)}\), are associated with the Work Rate employed and identified in the remainder of this article as follows:

1) \(\text{PValp} = \text{IEAC(t)}\)\(\text{PVav}\)
2) \(\text{EValp} = \text{IEAC(t)}\)\(\text{EVav}\)
3) \(\text{PValp} = \text{IEAC(t)}\)\(\text{PValp}\)
4) \(\text{EValp} = \text{IEAC(t)}\)\(\text{EVlp}\)

ES Duration Forecasting

A recent extension to EVM, ES, has emerged to provide reliable, useful schedule performance management information. In brief, the method yields time-based indicators, unlike the cost-based indicators for schedule performance offered by EVM.

Figure 1 is an illustration for understanding the concept. The ES measure identifies when the amount of EV accrued should have occurred. As depicted by the diagram, this is the point on the PMB where PV equals the EV accrued. The vertical line from the point on the PMB to the time axis determines the earned portion of the schedule. The duration from the beginning of the project to the intersection of the time axis is the amount of ES.

With ES and AT defined, the schedule performance efficiency is formulated as depicted in Figure 1, Schedule Perfor-
mance Index (time) [SPI(t)] = ES/AT. From EVM, final cost may be forecast from the formula, IEAC = BAC/Cost. Performance Index (CPI), CPI = EV/AC, where AC is the actual cost. In an analogous manner, final duration is forecast from IEAC(t)es = PD/SPI(t), where PD is the planned duration for the project and IEAC(t)es is the ES forecast of final duration.

Discussion of Forecasting Methods and Study Considerations

The objective of the study is to investigate and understand the forecasting capability of the five methods, four from EVM and one from ES. By inspection, it can be deduced that the EVM Work Rates have mathematical failings which affect their performance.

When the project executes past its planned duration, PVcum is equal to its maximum value, BAC, and is invariant thereafter. Thus, the PVav Work Rate becomes PVav = BAC/m, where m is a number larger than the planned number of time periods for the project. Obviously, as m becomes larger, PVav is decreasingly smaller, thereby causing the work remaining forecast to be longer than its planned time.

The situation for the PVlp Work Rate is more severe. After the planned project duration has passed, there are no periodic values of PV, thereby making the computation of IEAC(t)PVlp indeterminate. These observations are excluded from the study because it may be that IEAC(t)PVlp is a good predictor otherwise. A tenet of the study is to provide each method a reasonable opportunity to show well, despite the known limitations.

The two Work Rates, EVav and EVlp, do not normally have indeterminate calculation conditions. There is, however, one exception of when a period elapses with no EV accrued; this condition may occur for smaller projects which assess their status weekly. When EVlp is equal to zero, IEAC(t)EVlp cannot be calculated. Just as for PVlp, the condition is accommodated in the study so as to not discredit the overall forecasting performance of EVlp. When an anomalous instance is encountered, the forecast for the previous valid observation is used.

The forecasting from ES does not experience indeterminate calculation conditions. A common positive characteristic of all of the methods, with the exception of IEAC(t)PVlp, is that they converge to the actual duration. The predictive capability of the four EVM-based methods in this study may be superior to the two tested by Vanhoucke and Vandevoorde [4,5]; those methods did not necessarily correctly calculate the actual outcome duration at completion.

Study Hypothesis and Methodology

The conjecture to be examined in the study is that ES provides a better forecasting method of final project duration than the four methods cited previously for EVM. To make a determination concerning this conjecture, the extreme case will be examined and tested. The test is constructed to show that the EVM methods, as an aggregate, produce better forecasts than ES does. If the EVM methods are shown to be superior to ES, it will not be known which one of the EVM methods is better. Thus, if this is the determination, further examination will be necessary to understand the circumstances for selecting the appropriate EVM forecasting method.

The hypothesis from the preceding discussion is formally defined (by [6]) as follows:

Ho: EVM methods produce the better forecast of final project duration
Ha: The ES method produces the better forecast of final project duration

where

Ho: The null hypothesis (i.e., the statement to be validated) and Ha is the alternate hypothesis.

The statistical testing is performed using the Sign Test applied at a 0.05 level of significance [7]. Assuming each of the five methods has an equal probability of success, the probability for each trial is 0.8.

Data from 16 projects is used for generating the forecasts from each of the methods. These forecasts are then tested and analyzed. The test statistic for the hypothesis test is computed from the number of times the EVM methods are observed to yield the better forecast. Thus, for each testing condition applied,

![Graph](image)

Figure 1: The Earned Schedule Concept

Table 1: Schedule Performance for Projects in the Data Set

<table>
<thead>
<tr>
<th>Project</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned Duration</td>
<td>21m</td>
<td>32m</td>
<td>36m</td>
<td>43m</td>
<td>24m</td>
<td>50m</td>
<td>46m</td>
<td>29m</td>
<td>45m</td>
<td>44m</td>
<td>17m</td>
<td>50m</td>
<td>81w</td>
<td>25w</td>
<td>25w</td>
<td>19w</td>
</tr>
<tr>
<td>Actual Duration</td>
<td>24m</td>
<td>38m</td>
<td>43m</td>
<td>47m</td>
<td>24m</td>
<td>59m</td>
<td>54m</td>
<td>30m</td>
<td>55m</td>
<td>50m</td>
<td>23m</td>
<td>50m</td>
<td>83w</td>
<td>25w</td>
<td>22w</td>
<td>13w</td>
</tr>
</tbody>
</table>

Legend: m = months w = weeks
the maximum number of successes for the EVM methods is 16. When the EVM methods successes are fewer than 10, the test statistic has a value in the critical region (< 0.05). A value in the critical region indicates that there is enough evidence to reject the null hypothesis. In clearer language, this test result shows that the EVM methods do not produce duration forecasts better than those from ES. A test statistic value outside of the critical region is evidence to reject the null hypothesis. In clearer language, this test result shows that the EVM methods converges to the actual final duration more rapidly than the others, thus being better for a portion of the forecast (but not necessarily superior overall). The ranges used for this purpose are: 25-100 percent, 50-100 percent, and 75-100 percent.

Data Discussion
A total of 16 projects are included in the study. Twelve (1 through 12) are from one source with four (13 through 16) from a second. The output of the 12 projects is high technology products. The remaining four projects are associated with IT products.

The primary data requirement is that the projects used in the study have not undergone any re-planning. The requirement is necessary to be able to discern the ability of the forecasting methods without having outside influence. All 16 projects performed from beginning to completion without having baseline changes.

Table 1 (see page 11) illustrates the analysis and testing for specific regions of performance. Groupings are formed using the observations within various percent complete ranges to make the determinations: early (10-40 percent), middle (40-70 percent), late (70-100 percent), overall (10-100 percent). Additionally, other ranges are used to determine if one of the methods converges to the actual final duration more rapidly than the others, thus being better for a portion of the forecast (but not necessarily superior overall). The ranges used for this purpose are: 25-100 percent, 50-100 percent, and 75-100 percent.

Results Analysis
To begin the analysis, it is instructive to view the graphs from a single project (Project #13). The first graph, Figure 2, portrays the forecasting performance of all five methods along with the horizontal line for the actual final duration. It is observed that the prediction using the PVav and EVav Work Rates behave in a much less erratic manner than do the forecasts from the current period rates, PVlp and EVlp. The forecast from ES is seen to be much better than any of the EVM pre-
The next graph, Figure 3, portrays similar information. It contains plots of the standard deviation versus percent complete for each of the EVM and ES methods. The behavior seen in Figure 2 is amplified by viewing the standard deviation. As described for Figure 2, the average work rates are less volatile, while the current rates have large changes from one observation to the next. Again, the ES forecast is observed to be much more stable than any of the other methods. The standard deviation of the ES forecast is noticeably smaller than any of the other methods between 50 and 100 percent complete.

Figure 4 is a column graph illustrating a view intended for analyzing the forecasting behavior for early, middle, late, and overall ranges of project execution. Figure 5 is also a column graph; the ranges applied (25-100 percent, 50-100 percent, 75-100 percent) are used to determine the behavior of the various methods regarding the rate of convergence to the final duration.

For both Figures 4 and 5, it is clearly seen that the current period methods are generally more volatile and that the ES method is the better predictor in every range. In fact, for this project, the accuracy of the ES forecasting method is significantly better than the EVM methods.

It was previously mentioned that, with the exception of the forecast using the PVlp Work Rate, all of the other methods converge to calculate the actual final duration. Because of this characteristic, the expectation is that the standard deviation should decrease as the completion percentage increases. This behavior is observed for ES and EVlp, but the others are nearly invariant between the 25-100 percent, 50-100 percent, and 75-100 percent ranges. Looking back at Figure 3, the convergence is seen for PVav and EVav, but it is not strongly evident until after the project has progressed past 80 percent complete.

Table 2 (see next page) is an example for the 10-40 percent completion range. It contains plots of the standard deviation versus percent complete for each forecasting method and their ranking for each project. From reviewing the table, an observation is made that for this completion range, the ES rank is 1 for 11 of the projects. The ES forecasting method provides the best forecasts of final duration for a large majority of the projects. Even so, it does not produce the best forecast results for every project. All seven ranges are analyzed to understand more completely how the various methods perform under different circumstances.

To better understand the goodness of the forecasting methods for the examined completion band, Table 3 (see next page) was created. It is a condensation of Table 2. As can be observed, the distribution of the ranking numbers is made between the various forecasting methods. In general, the sum for each of the ranges will equal the number of projects, 16. However, when there are ties, as there is for this range, one rank may total more than 16 while an adjacent rank will be equally lower. For Table 3, it is noted the sum of the 1s is seventeen, while the sum of the 2s is 15.

At the bottom of Table 3, a weighted average of the ranking distribution is computed for each of the forecasting methods. These weighted averages are then used to rank the methods for the completion range examined. Table 4 (see next page) is a tabulation of the weighted averages of the rankings for each of the seven completion ranges. For each range, the ES method has the lowest weighted average, indicating that, on average, it is the best predictor of final duration. The only challenge to ES is within the 40-70
percent middle range, where the weighted average of 2.063 for ES is somewhat lower than the 2.500 from PVav.

Finally, more conclusive evidence of the goodness of the ES forecasting capability is provided from the statistical hypothesis testing. Table 5 provides the compiled results from the testing analysis.

In the table, the count of the rank of 1 is provided for the aggregate of the EVM methods and for ES. With the exception of one test range, ES shows to be superior to the other methods combined. In one instance, the 40-70 percent range, the number of 1s counted for EVM exceeds the number for ES. However, the value of the test statistic is in the critical region; this is enough evidence to reject the null hypothesis that the aggregate of the EVM methods is better than the ES method. Thus, from the results of the Sign Test, ES is indicated to be the better forecasting method regardless of project completion stage (early, middle, late, and overall).

Table 2: Standard Deviation and Ranking for 10-40 Percent Completion Range

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project #1</th>
<th>Project #2</th>
<th>Project #3</th>
<th>Project #4</th>
<th>Project #5</th>
<th>Project #6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Std Dev</td>
<td>Rank</td>
<td>Std Dev</td>
<td>Rank</td>
<td>Std Dev</td>
<td>Rank</td>
</tr>
<tr>
<td>PVav</td>
<td>14.95</td>
<td>5</td>
<td>13.01</td>
<td>4</td>
<td>11.93</td>
<td>2</td>
</tr>
<tr>
<td>EVav</td>
<td>2.65</td>
<td>1</td>
<td>9.35</td>
<td>2</td>
<td>8.28</td>
<td>1</td>
</tr>
<tr>
<td>PVlp</td>
<td>5.47</td>
<td>2</td>
<td>13.62</td>
<td>5</td>
<td>77.74</td>
<td>5</td>
</tr>
<tr>
<td>EVlp</td>
<td>6.00</td>
<td>3</td>
<td>12.14</td>
<td>3</td>
<td>22.38</td>
<td>3</td>
</tr>
<tr>
<td>ES</td>
<td>8.28</td>
<td>4</td>
<td>4.78</td>
<td>1</td>
<td>46.76</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project #7</th>
<th>Project #8</th>
<th>Project #9</th>
<th>Project #10</th>
<th>Project #11</th>
<th>Project #12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Std Dev</td>
<td>Rank</td>
<td>Std Dev</td>
<td>Rank</td>
<td>Std Dev</td>
<td>Rank</td>
</tr>
<tr>
<td>PVav</td>
<td>9.79</td>
<td>3</td>
<td>16.16</td>
<td>3</td>
<td>6.75</td>
<td>2</td>
</tr>
<tr>
<td>EVav</td>
<td>6.00</td>
<td>2</td>
<td>33.17</td>
<td>5</td>
<td>15.63</td>
<td>3</td>
</tr>
<tr>
<td>PVlp</td>
<td>17.95</td>
<td>5</td>
<td>20.69</td>
<td>4</td>
<td>20.80</td>
<td>4</td>
</tr>
<tr>
<td>EVlp</td>
<td>15.07</td>
<td>4</td>
<td>5.69</td>
<td>2</td>
<td>525.62</td>
<td>5</td>
</tr>
<tr>
<td>ES</td>
<td>4.31</td>
<td>1</td>
<td>5.09</td>
<td>1</td>
<td>3.74</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project #13</th>
<th>Project #14</th>
<th>Project #15</th>
<th>Project #16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Std Dev</td>
<td>Rank</td>
<td>Std Dev</td>
<td>Rank</td>
</tr>
<tr>
<td>PVav</td>
<td>10.57</td>
<td>2</td>
<td>2.36</td>
<td>1</td>
</tr>
<tr>
<td>EVav</td>
<td>22.78</td>
<td>3</td>
<td>5.90</td>
<td>5</td>
</tr>
<tr>
<td>PVlp</td>
<td>28.25</td>
<td>4</td>
<td>2.36</td>
<td>1</td>
</tr>
<tr>
<td>EVlp</td>
<td>33.59</td>
<td>5</td>
<td>2.49</td>
<td>4</td>
</tr>
<tr>
<td>ES</td>
<td>8.62</td>
<td>1</td>
<td>4.46</td>
<td>3</td>
</tr>
</tbody>
</table>

Summary and Conclusions

Five methods of project duration forecasting were examined in this study, four from EVM and the ES technique. Performance data from 16 projects was used to assess the capabilities of the various forecasting methods. The analysis strategy segregated the project data into seven ranges of percent complete in order to isolate possible forecasting characteristics or tendencies among the methods.

Each of the methods were used to create forecasts from the project data. The standard deviation of the forecasts from the actual final duration was computed for each project, and each percent complete range was studied. The forecasting methods were then ranked from best to worst using the standard deviations.

The tabulation of best forecasts (one of the four EVM methods or ES) for each range was used to calculate the test statistic for the Sign Test. The null hypothesis—that EVM provides the better forecast—was rejected for every percent complete range examined.

Conclusively, among the methods and data set studied, ES is shown to be the best method of forecasting project duration.◆
Acknowledgement
The project data used in this study was made available by Dr. Ofer Zwikael and Mr. Kym Henderson. I am indebted to these gentlemen for their contribution to this study.

References

Note
1. While condensed, [5] is a more easily readable and accessible version of [4]. The complete article, [4], is fairly expensive, while [5] is available online at <www.pmi-cpm.org/pages/measurable_news/documents/Winter20072008Final5_000.pdf>.

About the Author
Walt Lipke retired in 2005 as deputy chief of the software division at Tinker AFB. He has over 35 years of experience in the development, maintenance, and management of software for automated testing of avionics. During his tenure, the division achieved several software process improvement milestones, including the coveted Software Engineering Institute/IEEE award for Software Process Achievement. Lipke has published several articles and presented at conferences internationally on the benefits of software process improvement and the application of EVM and statistical methods to software projects. He is the creator of the ES technique, which extracts schedule information from EV data. Lipke is a graduate of the DoD course for program managers. He is a professional engineer with a master’s degree in physics. He is a member of the physics honor society, Sigma Pi Sigma, and the collegiate honor society, Phi Kappa Phi. During 2007, he received the Project Management Institute (PMI) Metrics Specific Interest Group Scholar Award and the PMI Eric Jenett Project Management Excellence Award, both for his leadership role and contribution to project management resulting from his creation of ES.

1601 Pembroke DR
Norman, OK 73072
Phone: (405) 364-1594
E-mail:waltlipke@cox.net

WEB SITES

Earned Value Management (EVM)
www.earnedvaluemangement.com
Learn more about the project management system that combines schedule performance and cost performance to answer the question, “What did we get for the money we spent?” The Web site describes the basic concepts of EVM: project steps earning value as work is completed, comparing Earned Value to the actual and planned costs to determine project and future performance, and measuring the physical project progress in dollars so that both schedule and cost performance can be analyzed in the same terms. The Web site also details EVM’s benefits, its building blocks, its performance indices and variance, its forecasting capabilities, and ways to get your organization or business started in utilizing EVM.

Earned Schedule (ES)
www.earnschedule.com
ES is a breakthrough analytical technique that resolves the EVM dilemma of schedule indicators providing false information for late-performing projects. It is derived from and is an extension of EVM, needing no additional data for acquiring the ES measures (just the data from EVM). Along with learning the process of using ES, this site defines ES terminology, offers links to the latest ES news, publications, and presentations, and provides a free downloadable ES calculator.

Get your ducks in a row
www.washintontechnology.com/print/23-02/32228-1.html
To contractors and agencies, ISO certifications and CMMI ratings denote specific accomplishments in implementing methodical, disciplined processes. In his article for Washington Technology, Michael Hardy argues that while earning certifications is costly and time-consuming, companies cannot avoid making the investment if they expect to remain competitive. He also highlights several companies, showing both their processes in earning ISO certifications and CMMI Level ratings, and the competitive benefits those certifications have yielded.

Guide to the Software Engineering Body of Knowledge
For the first time, the IEEE Computer Society has established a baseline for the body of knowledge for the field of software engineering. The Guide does not claim to define the body of knowledge but rather it serves as a compendium and guide to the body of knowledge that has been developing and evolving over the past four decades. The Guide is subdivided into 10 software engineering Knowledge Areas, including software requirements, design, construction, testing, maintenance, configuration management, engineering management, engineering process, engineering tools/methods, and quality.