
20 CrossTalk—September/October 2012

RESILIENT CYBER ECOSYSTEMS

Section 1: How Does the
Government Currently Do
Software Assurance?

According to the Committee on National
Security Systems, software assurance is the,
“Level of confidence that software is free from
vulnerabilities, either intentionally designed into
the software or accidentally inserted at any
time during its lifecycle, and that the software
functions in the intended manner” [1]. In this
section we mention current software assurance
practices and tools used by the DoD, however,
many of the principals apply to other agencies
and organizations. It is critical that DoD infor-
mation systems assure software as a proactive
security measure before using them in opera-
tions. The DoD Information Assurance Certi-
fication and Accreditation Process (DIACAP)
ensures that risk management practices are
put in place during DoD software development.
Essentially, DIACAP is a formal framework in
which software assurance can take place so
that the software assurance process is well
documented. DIACAP is a formal, well-defined
set of activities, tasks, and management work-
flow for certifying and accrediting software for
the DoD.

There are some software systems in the

government that help to enforce workflow in
DIACAP including DoD’s Enterprise Mission
Assurance Support Service and the Air Force’s
Enterprise Information Technology Data Re-
pository. These systems assist parties undergo-
ing DIACAP by providing management services
for workflow among the various roles in the
DIACAP process, report generation capabili-
ties for DIACAP requirements, and repositories
for generating required reports, and repository
capabilities for data pertinent to DIACAP.

In support of secure systems, the Defense
Information Systems Agency has introduced
Security Technical Implementation Guides that
help define specific ways to ensure security
in a system. The Application Security and
Development STIG is particularly pertinent to
software assurance because it defines specific
guidelines to be followed by application design-
ers to ensure security (e.g., “The Designer will
ensure the application does not display ac-
count passwords as clear text” [2].).

The next section summarizes how DHS de-
fines a cyber ecosystem so that we can define
a software assurance ecosystem in similar
terms in Section 3. Then in Section 4 we share
our experiences building a software assurance
infrastructure to illustrate the principals.

Section 2: What Is a Cyber
Ecosystem?

On March 23, 2011, DHS posted a blog
entry with a white paper titled, “Enabling
Distributed Security in Cyberspace” [3]. The
white paper provides an overview of distributed
cyber security approaches and represents
the collective vision of 13 federal agencies
towards a healthy cyber ecosystem. A cyber
ecosystem is defined as the set of diverse
participants (which include cyber devices such
as computers, software, and communications
technologies) that interoperate. However, the
ecosystem does not stop at cyber devices, but
also includes other participants such as private
firms, non-profits, governments, individuals,
processes, etc.

The white paper presents three build-
ing blocks of cyber ecosystems: Automa-
tion, Interoperability, and Authentication. The
ecosystem described in the white paper is the
operational side of the distributed cyber eco-
system (i.e., running servers, network devices,
production software, etc.). The operational side
necessitates reactive security measures such
as intrusion detection and real-time courses of
action. The next section uses the three build-
ing blocks to describe a software assurance
ecosystem, which is the software development
side of cyber ecosystems, and includes require-
ments, design, implementation, and test stages.
In contrast to the operational side, the security
in the software development side is proactive in
nature and includes security activities such as
software assurance.

Section 3: How Does Software As-
surance Fit in Cyber Ecosystems?

Software assurance is an important part
of any software development project to meet
quality, safety, and security requirements. How-
ever, in today’s software development world,
enterprise software assurance capabilities must
match the security needs of the growing and
diverse cyber ecosystem. For example, many
software vendors utilize open source software
or acquire COTS software to include in their
solution. In this case, each software component
is now part of the software assurance eco-
system. Furthermore, the intercommunication
between software necessitates standardization
of software assurance capabilities to provide a
common interface.

The same three building blocks used to de-
scribe the secure operations portion of healthy

Brian Badillo, Harmonia Holdings Group, LLC
Marc Abrams, Harmonia Holdings Group, LLC

Abstract. Distributed security in cyberspace can be performed using many real-time components,
from intrusion detection systems to incident management systems. However, these components are
reactive rather than proactive. This article will define the space within resilient cyber ecosystems that
represents proactive software assurance during the software development lifecycle, from require-
ments to design to implementation to testing and beyond. Section 1 defines software assurance
and provides some examples of current tools and practices in the government that are used for this
proactive security practice. Then Section 2 defines the term cyber ecosystem as presented by DHS
so that Section 3 can use this concept to explore the space of a software assurance ecosystem.
Then in Section 4 we share our experiences in developing a software assurance infrastructure that
implements the principals of a software assurance ecosystem and also bridges the gap between
proactive and reactive systems. A healthy software assurance ecosystem is critical. The government
needs the capabilities to quickly and efficiently certify and accredit systems to minimize vulnerabili-
ties so they can be connected to networks such as the DoD Global Information Grid.

Defining Proactive Software
Assurance Practices for
Healthier Cyber Ecosystems

CrossTalk—September/October 2012 21

RESILIENT CYBER ECOSYSTEMS

cyber ecosystems can be used to describe
software assurance ecosystems.

Automation
Software assurance tools can aid software

developers in making important security, quality,
and safety decisions during the requirements,
design, implementation, and testing stages.
These tools automate parts of the software
assurance process by performing much of
the brute force work for identifying software
weaknesses, which then allows developers
to sift through the suspected weaknesses
identified by automated tools and decide which
weaknesses need further action (later sec-
tions describe tool automation as a way to
collect evidence for software assurance cases).
Software assurance tools can be classified into
several analysis approaches and techniques,
each of which have specific advantages and
identify a specific subset of software weak-
nesses. A classification of tools is given by
NIST Software Assurance Metrics And Tool
Evaluation (SAMATE) project <http://samate.
nist.gov/index.php/Tool_Survey.html> and
includes such tool classes as static analysis,
dynamic analysis, pedigree analysis, binary
code scanners, disassembler analysis, binary
fault injection, fuzzing, etc.

Interoperability
Given the multitude of tools in the software

assurance ecosystem (more than 75 listed on
the SAMATE project website), standards for in-
teroperability among these tools is a necessity.

One such standard is the Common Weak-
ness Enumeration (CWE) <http://cwe.mitre.
org>. CWE is a dictionary of software weak-
ness types developed by MITRE, intended to
facilitate communication about weaknesses
in software such as code constructs that are
prone to memory leaks, susceptible to injec-
tion attacks, etc. From person to person,
descriptions of these weaknesses can often
be inconsistent; the CWE dictionary gives a
standardized reference point as well as levels
of specificity for these weaknesses. They are
organized in a hierarchy, with general weak-
nesses (e.g., CWE-710: Coding Standards
Violation) at the top level, getting increasingly
more specific towards the lower levels (e.g.,
CWE-259: Use of Hard-coded Password). This
hierarchy allows weaknesses to be related
to each other with parent/child relationships.
Some weaknesses also relate to each other
with a precede/follow relationship that sug-

gests that one weakness may be caused by
another. Each weakness has a self-explanatory
title, accompanied by an index. For example,
the weakness described as NULL Pointer
Dereference has the index of 476. Many tools
available today already reference the CWE
indices in their output. CWEs are part of a
larger initiative called Making Security Measur-
able <http://measurablesecurity.mitre.org> to
standardize system security.

With tools in the software assurance eco-
system using CWEs to represent their output,
developer participants in the ecosystem can
use a wider array of tools because using each
tool that outputs the familiar CWEs will be
easier to learn. Using a combination of tools
for software assurance in turn leads to more
assurance coverage of software. For example,
consider a developer who is already familiar
with a static analysis tool of their choice for
detecting memory management weaknesses
in code. Suppose that their familiar tool maps
the weaknesses it identifies to CWEs. Since
the developer already has knowledge con-
cerning the weaknesses identified by their
tool of choice, they are able to easily use and
understand other tools that also produce CWE
output.

Another advantage of interoperability is the
ability to leverage collective bodies of knowl-
edge concerning common assurance cases. An
assurance case is defined as claims, argu-
ments, and evidence that support the conten-
tion of particular software requirements [4]. In
effect, an assurance case builds confidence in
a system given evidence found by automated
software assurance tools.

The Software Assurance Evidence
Metamodel (SAEM) and the Argument
Metamodel (ARM) are standardized models for
representing parts of an assurance case, both
of which were developed by Object Manage-
ment Group’s (OMG) Systems Assurance Task
Force (SATF) <http://sysa.omg.org>. Argu-
ments are logic that combines evidence and
other asserted claims in a meaningful way to
support or refute another particular claim [5].
The most primitive building blocks arguments
are premises and conclusions. The argument
asserts that if all the premises are accepted
as true, then the conclusion must also be ac-
cepted. Arguments can be chained together
such that the conclusion of one argument can
provide the input to a premise in another argu-
ment. A CWE could contribute to evidence in
a claim. However, an evidence item in SAEM

contains additional useful information to be
used in an assurance case, such as the evi-
dence collection method used. Information that
SAEM might include is the name and version
of the tool used to identify the CWE, the time
that the CWE was assessed, or the confidence
level given to the evidence item. In addi-
tion, SAEM represents whether the evidence
strengthens or weakens an assertion made by
the evidence (which would in turn support an
argument which uses the evidence to make a
claim).

CWE, SAEM, and ARM are part of a larger
Software Assurance Automation Protocol
(SwAAP). SwAAP is a protocol composed of
many interrelated standards [6].

Authentication
In the operations realm of the cyber eco-

system, authentication means making sure
that the users of cyber devices are who they
say they are (which includes both human and
machine users). However, in the software
assurance ecosystem, authentication means
making sure that codebases are in fact the
ones that have undergone the extensive as-
surance processes that they say they have. For
instance, suppose that a library for protecting
against Cross Site Scripting (XSS) is used in
the security of a critical web application. The
developers of the web application have decided
to use this particular library because it has
been vetted by Independent Verification and
Validation (IV&V). However, when packaging
the web application for production use, the
library is not authenticated (i.e., the codebase is
not checked to be from the expected supplier)
and a malicious look-alike library is used in
deployment. Now, the web application contains
open vulnerabilities for attack.

Software supply chain integrity is another
facet of authentication in the software eco-
system. According to SAFEcode not only must
codebases be authenticated to make sure
that they are the expected software, but the
software must be expected to use secure, safe,
and quality assurance processes during devel-
opment [7]. It is therefore important to consider
developer pedigree and policy during sourcing,
development, and distribution.

Section 4: Building a Software As-
surance Infrastructure

In this section, we discuss our experiences
in applying the principles above by combining
open standards and open source technologies

http://samate.nist.gov/index.php/Tool_Survey.html
http://samate.nist.gov/index.php/Tool_Survey.html
http://cwe.mitre.org
http://cwe.mitre.org
http://measurablesecurity.mitre.org
http://sysa.omg.org

22 CrossTalk—September/October 2012

RESILIENT CYBER ECOSYSTEMS

into an infrastructure. Software tooling that supports the three
building blocks of software assurance (automation, interoper-
ability, and authentication) is needed to make pre-incident
detection practices during the software development lifecycle
a reality. For instance, there are many software assurance tools
that can be used to identify weaknesses in code, some of
which already conform to the SwAAP standards (e.g., produce
CWE output). However, traditional tools perform a single class
of analysis approach or technique (i.e., static analysis, dynamic
analysis, fuzzing, etc.) that provides them certain strengths and
shortcomings. In addition, tools are usually focused on find-
ing weaknesses in code developed in a particular language or
for a specific platform. Furthermore, any single tool is subject
to generating false-positive findings (e.g., a weakness in code
that does not lead to vulnerability). In the rest of the section,
we discuss our experiences in implementing the principles of a
software assurance ecosystem through a software assurance
infrastructure called Conforma.

In our experience while building the Conforma software
assurance infrastructure we found that the infrastructure can
provide the foundation to combine best-of-breed tools from
many tool classes that have overlapping CWE coverage to
increase confidence and reduce false-positive findings in soft-
ware assurance. To accomplish this, the Conforma infrastructure
contains a Tool Profile for each third-party tool plugged in to the
infrastructure. The profile uses Coverage Claims Representa-
tion (CCR) [cwe.mitre.org/compatible/ccr.html] from the CWE

standard to express which CWEs each tool claims to uncover.
This profile enables Conforma to orchestrate the execution of
appropriate third-party tools given a set of evidence that must
be found to support an assurance case. While some third-party
tools already produce CWEs (e.g., Fortify, Veracode, Klocwork),
Conforma must map to a CWE each message generated by
tools that do not (e.g., Splint, Peach). With the number of tools
available, cross checking between tools using the common CWE
output provides a base evaluation of the confidence level re-
garding the results. A software assurance infrastructure, such as
Conforma, computes percentages involving the number of tools
that found a certain error. For example, some types of tools reli-
ably find particular weaknesses, but if multiple tools report the
same weakness then a user’s confidence that the weakness is
a valid result, and not a false-positive, increases. In this respect,
a software assurance infrastructure harnesses an ecosystem of
tools to the advantage of the user by increasing confidence and
reducing false-positives.

In Figure 1, there are three columns, which represent the
three major parts of our software assurance infrastructure
design (and the associated OMG standards that they leverage).
The left side of the figure shows a list of software assurance
tools that are plugged into the infrastructure. Each of these
tools performs some sort of analysis, which produces CWEs
that the infrastructure wraps into evidence in the form of SAEM,
which is sent back to the infrastructure. The middle of the figure
depicts a knowledge base containing rules and workflows that

Figure 1: Infrastructure for a Software Assurance Ecosystem Overview

CrossTalk—September/October 2012 23

RESILIENT CYBER ECOSYSTEMS

support ARM and that are executed by the infrastructure. In oth-
er words, the rules will model claims in the form of premises that
must be satisfied in order for certain conclusions to be made.
The right side of the figure shows the users of the infrastructure
(human participants in the software assurance ecosystem) using
a web application UI to make conclusions about the software
under assurance assessment and decide whether the evidence,
arguments, and claims made in the assurance cases indicate
that the software is ready to become an operating member of a
healthy cyber ecosystem.

Each of the red boxes in Figure 1, in the order of how each
part is used, is described in the list below.

1. Codify Argument: Arguments are codified (written in
the standard ARM format) and stored in the Knowledge Base.

2. Determine Evidence: The codified ARM model is
used in the Analysis Process to determine the evidence that is
needed for certain claims to be made.

3. Select Appropriate Tools: With the evidence identi-
fied along with the Tool Profiles stored in the Knowledge Base
(which describe tool coverage using CWE Coverage Claims
Representation), the appropriate tools are executed by the
infrastructure. These tools produce CWEs which should be used
to strengthen or weaken evidentiary assertions.

4. Report Results: After all tools have been executed
and the Analysis Process is complete, the user can initiate the
generation of a report. The report shows the resulting claims
about the software that can be made using the evidence that
has been found using the appropriate tools.

5. Make Decision: Finally, the user can answer the

question of whether or not the software is secure, safe, and of
good quality. They can make a claim that is backed up by the
arguments made in conjunction with evidence found by the
infrastructure.

An infrastructure such as Conforma can be deployed within
an enterprise to support the needs of a single software develop-
ment house. However, over the course of our work developing
a software assurance infrastructure we have learned that the
power of the infrastructure is truly realized when deployed on
a cloud environment where software assurance community
cooperation can be achieved. In a cooperative environment, the
infrastructure learns from the software assurance ecosystem
participants by continuously expanding its Knowledge Base
in real-time, which can then be used across the infrastructure
for improved software assurance. This concept is illustrated in
Figure 2 where two sets of Assurance Tools (far right and left
sides) share through the Collective Intelligence Center some
ARM data for assurance cases, Tool Profiles for up-to-date tool
data including new CWE mappings and CCR coverage, and
COTS Tool Plugins for increased interoperability between tools.
The infrastructure deployment depicted in Figure 2 fosters a
software assurance ecosystem through knowledge sharing.

Conforma itself is designed to learn how to better assure
software when software is in operation in the cyber ecosys-
tem. Conforma reacts to detected vulnerabilities and attacks
during operation and learns which parts of the code base were
not properly assessed in the assurance process. If there were
tools that produced evidence that was originally deemed false-
positive, then the tool profile is updated to reflect a different

Figure 2: Community Deployment Overview

24 CrossTalk—September/October 2012

RESILIENT CYBER ECOSYSTEMS

level of confidence in that particular tool. For example, suppose
a particular tool (with which Conforma associates a high level
of confidence) showed that an input field in a user interface
was being properly validated to protect against an XSS attack. If
a successful XSS attack on that input field is detected, Con-
forma would promptly lower the level of confidence associated
with that particular tool for assuring input field validation. This
information would then be shared across the infrastructure to all
users in the software assurance ecosystem as part of the tool’s
profile.

Securing a cyber ecosystem can be divided into two methods:
reactive and proactive. In our experience building a software
assurance infrastructure, we found that we could complement
reactive security with proactive software assurance, and vice
versa. Thus, in addition to fostering a tighter software assurance
ecosystem, Conforma bridges the gap between the operations
and development lifecycle phases of software in cyber ecosys-
tems by using both reactive and proactive security measures.
New vulnerabilities and new attacks continue to be identified
every day in the cyber world. It is important that the software
assurance community learns how to protect against these vul-
nerabilities. The Conforma infrastructure is designed to improve
its own assurance processes by detecting vulnerabilities and
attacks during operation of software that was assured within its
infrastructure.

ABOUT THE AUTHORS

1. United States. Committee on National Security Systems. National Information Assurance
 Glossary: CNSS Instruction No. 4009. By Richard C. Schaeffer, Jr. 26 Apr. 2010. Web.
2. United States. DISA for Department of Defense. Application Security and
 Development: Security Technical Implementation Guide. Version 3, Release 4, 28 Oct.
 2011. Web. <http://iase.disa.mil/stigs/app_security/app_sec/u_application_secu
 rity_dev_stig_v3r4_20111028.zip>.
3. United States. Department of Homeland Security. Enabling Distributed Security in
 Cyberspace. U.S. Department of Homeland Security, 23 Mar. 2011. Web.
4. Software Assurance Evidence Metamodel (SAEM). Publication no. Ptc/2010-08-
 37. Object Management Group, Inc. (OMG), Aug. 2010. Web. <www.omg.org/cgi-bin/
 doc?ptc/10-08-37.pdf>.
5. Argumentation Metamodel (ARM). Publication no. Ptc/2010-08-36. Object Management
 Group, Inc. (OMG), Aug. 2010. Web.
 <http://www.omg.org/cgi-bin/doc?ptc/10-08-36.pdf>.
6. Jarzombek, Joe. “Public/Private Collaboration Efforts for Enterprise Security
 Automation.” Speech. Software Assurance Forum: Building Security In. Baltimore
 Convention Center. 27 Sept. 2010. Security Content Automation Protocol. U.S.
 Department of Commerce, NIST. Web. <http://scap.nist.gov/events/2010/itsac/presen
 tations/day1/Software_Assurance-PublicPrivate_Collaboration_Efforts_for_Enter
 prise_Security_Automation.pdf>.
7. Reddy, Dan, Brad Minnis, Chris Fagan, Cheri McGuire, Paul Nicholas, Diego Baldini, Janne
 Uusilehto, Gunter Bitz, Yuecel Karabulut, and Gary Phillips. The Software Supply Chain Integrity
 Framework: Defining Risks and Responsibilities for Securing Software in the Global Supply
 Chain. Tech. Ed. Stacy Simpson. SAFECode, 21 July 2009. Web.

REFERENCES

Brian Badillo, M.S., (Computer Science,
Virginia Polytechnic University) is lead
software engineer at Harmonia. He suc-
cessfully completed seven Phase I Small
Business Innovative Research (SBIR) topics,
bringing three to Phase II, and has been
awarded three Phase I SBIR topics. He
has used many community efforts such as
DHS’ “Building Security In,” MITRE’s “Making
Security Measurable,” Open Web Application
Security Project, and Microsoft’s “Security
Lifecycle Development.” Using this research,
he led Conforma development.

Harmonia Holdings Group, LLC
2020 Kraft Drive, Suite 1000
Blacksburg, VA 24060
Phone: 540-951-5900 Ext. 255
Fax: 540-951-5911
E-mail: bbadillo@harmonia.com

Marc Abrams, Ph.D., (Computer Science,
University of Maryland; Post Doctoral Study,
Stanford University) is Harmonia’s President
and CTO, providing technical and busi-
ness leadership and overseeing all techni-
cal activities. He has more than 20 years
of professional experience in the design,
development, deployment, and maintenance
of software and information networks,
focusing on user interfaces. He architected
Harmonia’s LiquidApps® tool suite and led
its implementation in the Army’s ATIA-M
project, US Navy’s DDG 1000 destroyer, and
Tomahawk weapons control system.

Harmonia Holdings Group, LLC
2020 Kraft Drive, Suite 1000
Blacksburg, VA 24060
Phone: 540-951-5901
Fax: 540-951-5911
E-mail: mabrams@harmonia.com

http://iase.disa.mil/stigs/app_security/app_sec/u_application_security_dev_stig_v3r4_20111028.zip
http://iase.disa.mil/stigs/app_security/app_sec/u_application_security_dev_stig_v3r4_20111028.zip
http://www.omg.org/cgi-bin/doc?ptc/10-08-37.pdf
http://www.omg.org/cgi-bin/doc?ptc/10-08-37.pdf
http://www.omg.org/cgi-bin/doc?ptc/10-08-36.pdf
http://scap.nist.gov/events/2010/itsac/presentations/day1/Software_Assurance-PublicPrivate_Collaboration_Efforts_for_Enterprise_Security_Automation.pdf
http://scap.nist.gov/events/2010/itsac/presentations/day1/Software_Assurance-PublicPrivate_Collaboration_Efforts_for_Enterprise_Security_Automation.pdf
http://scap.nist.gov/events/2010/itsac/presentations/day1/Software_Assurance-PublicPrivate_Collaboration_Efforts_for_Enterprise_Security_Automation.pdf
mailto:bbadillo%40harmonia.com?subject=
mailto:mabrams%40harmonia.com?subject=
http://www.omg.org/cgi-bin/doc?ptc/10-08-36.pdf

