
CrossTalk—September/October 2012 39

BACKTALK

Do you manage software? Perhaps you develop software? Then
you already know what stress is. As a former developer, program
manager, and software engineer, I understand the stress of writing,
developing, and managing software systems. There is stress in
gathering requirements, identifying users, designing the system,
writing the code, and managing changing requirements. There is
stress in testing the code, and—once delivered—there is stress in
managing the inevitable change upon change upon change.

Stress refers to the pressure, pull, or force exerted upon an
object. The resilience of an object, therefore, refers to its ability
to recover from stress. Other sources refer to the resilience of
an object as its ability to adjust to stress. There are interesting
parallels in comparing software to the brain. In fact, the well-
studied field of Psychological Resilience is a good starting point.

Paraphrased from Wikipedia:
Psychological Resilience refers to, “The idea of an individual’s ten-

dency to cope with stress and adversity. This coping may result in the
individual ‘bouncing back’ to a previous state of normal functioning, or
simply not showing negative effects. Another more controversial form
of resilience is sometimes referred to as ‘post-traumatic growth’ or
‘steeling effects’ wherein the experience of adversity leads to better
functioning (much like an inoculation gives one the capacity to cope
well with future exposure to disease). Resilience is most commonly
understood as a process, and not an individual trait.”

Question 1: How do you make resilient software? Answer:
you write resilient code by starting out writing non-resilient soft-
ware, and learning how to keep it running. As part of my software
engineering class, my students have to write a bulletproof program
(typically, a simple one that prompts for names, hours worked, and
hourly rate, and then prints out a simple payroll). I warn them that
I will actively try and crash it. Even knowing that I plan on being
malicious—I usually manage to crash about 50% of the programs. I
run them in front of the class, and ask the class to join in and help
me find and exploit flaws. Students initially are somewhat proud of
their code, then watch in dismay as I find inputs that will crash their
code: invalid inputs, extremely large numbers, zeroes for all inputs,
strings for numbers, or very large strings. It is usually their first ex-
perience with actively evil input. They learn. They learn to bulletproof
their code, to check all inputs, and to test for valid inputs all the
time. They learn to trap and handle exceptions. And the viewpoint of
writing really resilient good code is learned. You learn to write good
resilient code by writing bad resilient code—and improving it over
and over (…and over). And then you learn to write code that, when
presented with inconsistent or invalid conditions, gracefully recov-
ers, and returns to a consistent and usable state, without destroying
data and without invalidating previous work.

Question 2: How can you maintain “normal functionality”
in software? Answer: by taking economically reasonable steps
to ensure that the user can perform normal operations under
almost any type of system stress. In Question No. 1, it was the
code that needed to be good. However, in this question, you see
that your control over the environment needs to be good, too.
Network down? You better have some local cached data to permit
emergency functionality. Is the network really slow? Maybe have
a good pre-fetch to reduce network latency. Worried about Denial
of Service because of overloading or attacks? Use firewalls,
redundancy, multiple servers, honeypots, etc. Do you have a single
point of failure when contacting remote devices? Maybe you need
to have multiple redundant routes to reach them. Mind you; you
just can’t throw hardware at the problems—you have to analyze
the needs of the user, evaluate how the environment will be
compromised, and take economically feasible preventative actions
to minimize or prevent compromise. Assume your system is con-
stantly under attack—and write not just good but defensive code.
In my classes on Enterprise Security, students learn that paranoia
is a good trait for network administrators. They are out to get you.

Question 3: How do you get a system to bounce back from
failure? Answer: you need to have a process in proactively updat-
ing your system in response to constantly changing environments
and conditions. Every day there is a new onslaught of viruses,
hacks, threats, system vulnerabilities, etc. You cannot just write
a program and expect it to be resilient for very long. It takes
proactive planning and constant work. It is a continual process,
not a single effort. One of the traits of a cyber system is a high
degree of interaction between your computer hardware and other
physical elements. These physical elements can be networks,
remote hardware, and a large collection of physical devices. Cyber
systems try to control all of this, and at the same time possibly
interact with many other systems. Cyber systems sometimes need
extremely high levels of reliability, precision, and coordination
among the components—think air traffic control, unmanned ve-
hicle operation, robotic surgery, and healthcare monitoring. Every
piece you add gives yet another opportunity for the overall system
to exhibit negative behavior (a nice euphemism for fail). There is
no sane way to approach this as a single software-writing exer-
cise performed as a solo exercise. You need a high-integrity pro-
cess to create and update the software. Complex systems require
complex processes—processes that are comprehensive, tested,
and updated frequently. They need processes that are continually
updated as new weaknesses or deficiencies are found.

I never said it was easy. In fact, developers agree—this is hard
work. Creating reliable, resilient, robust, high-integrity cyber
systems is probably one of the hardest development efforts in
the field of software engineering. It is hard to do.

On the other hand, it is a lot easier than living with the potential
consequences of not doing it.

David A. Cook, Ph.D.
Stephen F. Austin State University
cookda@sfasu.edu

Stressed Out
Systems

mailto:cookda%40sfasu.edu?subject=

